Diels-Alder Addition of Cyclopentadiene to Allenic Esters: Catalysis by Lanthanide Complexes

R. P. Gandhi,* M. P. S. Ishar, and A. Wali

Department of Chemistry, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi-110016, India

Stereoselectivity and yields are markedly enhanced for Diels–Alder additions involving cyclopentadiene and allenic esters (**1a**—c), on catalysis by lanthanide complexes, Eu(fod)₃ and Pr(fod)₃.

Table 1

In general, the use of allenes as synthons in cycloadditions is restricted on account of their low dienophilicity and tendency to undergo excessive polymerisation under forcing conditions.¹ In this communication, we report cycloaddition reactions involving cyclopentadiene and three allenic esters *i.e.*, ethyl penta-2,3-dienoate (**1a**), ethyl hexa-2,3-dienoate (**1b**), and ethyl 4-methylpenta-2,3-dienoate (**1c**), with and without catalysis² by Eu(fod)₃ and Pr(fod)₃.† Under catalytic conditions, a marked improvement in stereoselectivity and yields of the cycloadducts is observed.

In an uncatalysed reaction, 4 mM of the allenic ester‡ was refluxed with 2.5—3.0 equiv. of cyclopentadiene in 50 ml of dry benzene. In the catalysed reaction, 1.0 mole% of Eu(fod)₃ or $Pr(fod)_3$ was added to the reaction mixture (both catalysts gave identical results) and left at room temperature. The products were separated using Chromatotron-2 (silica gel PF254 Merck, 2 mm, benzene–hexane 1:1, 5 ml/min.) or by column chromatography (silica gel, 60—120 mesh, petroleum ether–benzene 9:1), and were characterised by mass, ¹H n.m.r. (with extensive homodecoupling experiments), and ¹³C n.m.r. (COM decoupled and SFORD)§ spectroscopy, and comparison of spectral data with that of known bicyclo[2.2.1]heptene systems.³ The results are presented in Table 1.

The distinction between 2-endo and 2-exo configurations of the adducts is based on the value of vicinal coupling constant, ${}^{3}J_{1,2}$ and the C₂-H chemical shift.^{3a,b} The assignments are further supported by the observation of long range coupling, ${}^{4}J_{2,7s}$ (ca. 1.8 Hz), in the case of exo-adducts (2**a**-**c**) (due to W relationship),^{3a,4} and the downfield shift of C₃, C₁, and in particular, C₆, and the upfield shift of C₄, on going from endo (3**a**,**b**,**c**) to the corresponding exo-adducts (2**a**,**b**,**c**).^{3a,5} The assigned stereochemistry at the exo-cyclic double bond in

 \dagger fod = 1,1,1,2,2,3,3-heptafluoro-7,7-dimethyloctane-4,6-dionate.

[‡] The esters (**1a**—c) were prepared according to literature method; R. P. Gandhi, M. P. S. Ishar, and A. Wali, *Tetrahedron Lett.*, 1987, 6679.

§ Selected spectroscopic data: (n.m.r. spectra were recorded at 99.55 MHz for ¹H and 24.99 MHz for ¹³C nuclei in CDCl₃; J values are in Hz): (2a) v_{max} (CCl₄): 1725 (CO₂-); ¹H n.m.r. δ 5.54 (sp q, 1H, C₈-H, $J_{8,C(8)-Me}$ 6.80, $J_{2,8}$ 2.46), 2.84 (br s, 1H, C₂-H), 2.01 (br d, 1H, $C_{(7)}-H_{anti}$), 1.62–1.48 (m, 1H, C₇-H_{syn}, $J_{7a, 78}$ 8.40, $J_{2, 75}$ 1.85), 1.54 (sp d, 3H, C₈-Me, $J_{2, C(8)-Me}$ 0.97); ¹³C n.m.r. δ 173.6 (CO₂-), 140.5 (C₃), 137.6 (C₆), 135.2, 116.5, 60.4, 50.1 (C₄), 47.7, 47.1 (C₁, C₂), 46.8 (C₇), 15.0, 13.8; mass (m/z): 192(30) (M⁺), 119(100). (3a) v_{max} (CCl₄): 1730 (CO₂-); ¹H n.m.r. δ 5.25 (sp q, 1H, C₈-H, $J_{8, C(8)-Me}$ 6.84, $J_{2,8}$ 1.85), 3.39 (m, 1H, C₂-H, $J_{1,2}$ 3.75), 1.64 (br d, 1H, C₇-H_{anti}, $J_{7a,78}$ 8.59), 1.53 (sp d, 3H, C₈-Me, $J_{2,C(8)-Me}$ 0.97), 1.45 (br d, 1H, C_{7} -H_{syn}); ¹³C n.m.r. δ 171.9 (CO₂-), 139.4 (C₃), 135.4, 132.7 (C₆), 115.9, 59.7, 51.6 (C₄), 49.7 (C₇), 47.1 (C₂), 46.4 (C₁), 15.2, 13.8; mass (m/z): 192(5) (M⁺), 28(100). (4a) v_{max} (CCl₄): 1725 (CO₂-); ¹H n.m.r. δ 5.41 (sp q, 1H, C₈-H, $J_{8,C(8)-Me}$ 7.10, $J_{2,8}$ 1.49), 3.30 (br d, 1H, C_{2} -H, $J_{1,2}$ 3.75), 1.66 (sp d, 3H, C₈-Me, $J_{2,C(8)-Me}$ 2.04); ¹³C n.m.r. δ 172.5 (CO₂-), 139.7, 134.4, 132.9 (C₆), 116.3, 60.1, 49.3, (C₇), 48.6, 48.3 (C₂, C₄), 46.7 (C₁), 15.5, 14.0; mass (m/z): 192 (24) (M⁺), 28 (100). Similar data were obtained for (**2b**, c), (**3b**, c), and (**4b**). (2a,b), (3a,b) and (4a,b) is based on: i, comparison of allylic and, in particular, homoallylic couplings involving C₂-H and C₈-H, and C₂-H and C₈-alkyl groups, respectively, in pairs of the *endo*-adducts (3a, 4a and 3b, 4b); here, a high value of homoallylic coupling supports the *trans*-arrangement between C₂-H and C₈-alkyl groups;^{3a,4} ii, comparison^{5,6} of δ C₂ and C₄ in (3a,b), (4a,b) with corresponding values in the *endo*-adduct (3d) (R = R¹ = H, C₂ at δ 49.5 and C₄ at δ 51.1)¶; and iii, comparison^{5,6} of δ C₂ and δ C₄ in (2a,b) with corresponding values in the *exo*-adduct (2d) (R = R¹ = H, C₂ at δ 48.6 and C₄ at δ 50.0).¶

Table I.				
Allenic ester	Conditions (temp.)	Reaction time/h	% Yield	Product ratio (2:3:4)
(1a)	Uncatalysed			
```	(benzene, reflux)	14	38	25:67:8
	Catalysed (r.t.)	4	79	15:85
(1b)	Uncatalysed			
. ,	(benzene, reflux)	14	32	23:69:8
	Catalysed (r.t.)	4	84	14:86
(1c)	Uncatalysed			
	(benzene, reflux)	10		No reaction (tlc)
	Catalysed (r.t.)	6	60	10:90

¶ Data for (2d) and (3d), unpublished results from this laboratory.

In the above uncatalysed reactions, preferred formation of the Z isomers of both *exo*- and *endo*-adducts (**2a**,**b** and **3a**,**b**) takes place, the E isomers (**4a**,**b**) being produced to a lesser extent.|| Under Eu(fod)₃ and Pr(fod)₃ catalysis, however, the formation of E isomers is totally suppressed while *endo*selectivities and the overall yield of the adducts are markedly enhanced. In addition, the latter reactions require lower temperatures and shorter reaction times.

Received, 5th April 1988; Com. 8/01339J

|| The formation of three 1:1 adducts in the uncatalysed reaction involving each of the allenic esters, (1a) and (1b), was confirmed by g.c.m.s. studies done on a Jeol JMS-D300 instrument (SE-30, 3 mm  $\times$ 3 m, 120–250 °C, 10 °C/min., helium 1.4 kg/cm²); the retention times obtained (min) were (2a) 3.5; (3a) 3.0; (4a) 2.7; (2b) 3.5; (3b) 3.2; (4b) 3.0. Other recognisable peaks in the chromatogram corresponded to cyclopentadiene, dicyclopentadiene, the esters (1a,1b) and their dimers (mass).

## References

- (a) H. Pledger, Jr., J. Org. Chem., 1960, 25, 278; (b) L. Ghosez and M. J. O'Donnel, in 'Pericyclic Reactions,' eds. A. P. Marchand and R. E. Lehr, Academic Press, New York, 1977, vol. II, p. 55; (c) H. Hopf, in 'The Chemistry of The Allenes,' ed. S. R. Landor, Academic Press, New York, 1982, vol. 2. p. 563; (d) W. Oppolozer and C. Chapius, *Tetrahedron Lett.*, 1983, 4665; (e) K. Hayakawa, H. Nishiyama, and K. Kanematsu, J. Org. Chem., 1985, 50, 512.
- 2 S. Danishefski and M. Bednarski, Tetrahedron Lett., 1985, 2507.
- 3 (a) L. M. Jackman and S. Sternhell, 'Application of N.M.R. Spectroscopy,' Pergamon Press, Oxford, 1969; (b) W. L. Nelson and D. R. Allen, *J. Heterocycl. Chem.*, 1972, **9**, 561; (c) J. B. Stothers, '¹³C N.M.R. Spectroscopy,' Academic Press, London, 1972.
- 4 A. Gaudemer, in 'Stereochemistry,' ed. H. B. Kagan, Georg Thieme Publishers, Stuttgart, 1977, vol. 1, pp. 45-61, 111.
  5 (a) E. Lippmaa, T. Pehk, J. Pasasivirta, N. Bellikova and A. Plate,
- 5 (a) E. Lippmaa, T. Pehk, J. Pasasivirta, N. Bellikova and A. Plate, Org. Magn. Reson., 1970, 2, 581; (b) N. K. Wilson and J. B. Stothers, in 'Topics in Stereochemistry,' eds. N. L. Allinger and E. L. Eliel, John Wiley, New York, 1974, vol. 8, p. 43.
- 6 G. Van-Binst and D. Tourwe, Org. Magn. Reson., 1972, 4, 625.